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Abstract. An explicit expression for the quadratic density-response function of a

many-electron system is obtained in the framework of the time-dependent density-

functional theory, in terms of the linear and quadratic density-response functions of

noninteracting Kohn-Sham electrons and functional derivatives of the time-dependent

exchange-correlation potential. This is used to evaluate the quadratic stopping power

of a homogeneous electron gas for slow ions, which is demonstrated to be equivalent to

that obtained up to second order in the ion charge in the framework of a fully nonlinear

scattering approach. Numerical calculations are reported, thereby exploring the range

of validity of quadratic-response theory.
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1. Introduction

The inelastic interaction of charged particles with matter is one of the fundamental

problems of contemporary physics. It encompasses such phenomena as the stopping

power of solids for moving ions, electron and positron energy-loss spectroscopy, inelastic

low-energy electron diffraction, and hot-electron dynamics [1, 2].

A fruitful approach to the theoretical treatment of particle-solid interactions has

proven to be the use of perturbation series expansions in powers of the projectile-

target Coulomb interaction. For the description of many-electron targets, one typically

introduces linear and quadratic density-response functions, which describe the electron

density induced by external perturbations.

While linear-response theory has proven successful in the description of the

interaction of fast projectiles with solids, in the case of low projectile velocities and

low electron densities a nonlinear description becomes quantitatively necessary [3, 4, 5].

Besides, there exist phenomena which cannot be explained in the framework of linear-

response theory, an example being the existing difference between the scatterings of

positively and negatively charged particles [6, 7].

The random-phase approximation (RPA) has served as the natural starting point

for the calculation of both linear [8] and quadratic [4, 5] density-response functions of

the homogeneous electron gas. However, exchange and correlation (xc) effects, which

are absent in the RPA, are known to be important for metallic electron densities [9].

The purpose of this paper is to derive in the framework of the time-dependent density-

functional theory (TDDFT) [10, 11] an explicit expression for the quadratic density-

response function of a many-electron system, which will then be used to evaluate the

second-order energy loss per unit path length of charged particles moving through solid

targets, i.e. the so-called stopping power of the target.

Another approach to evaluate the energy loss of slow ions moving in a many-electron

system is based on the ordinary formulation of scattering theory. In this approach

[12, 13, 14], the stopping power for a heavy particle is determined in the low-velocity limit

from the knowledge of the scattering phase-shifts, which can be obtained from a static

nonlinearly screened potential by solving self-consistently the Kohn-Sham equation of

density-functional theory (DFT) [15]. Since these nonperturbative calculations include

all orders in the projectile-target interaction, they represent an important standard to

investigate the range of validity of perturbative expansions. Nonetheless, they have the

limitation of being restricted to low velocities (v << vF , vF being the Fermi velocity)

of recoilless probe particles moving in bulk materials. ‡

The interrelation of the perturbative-response and nonperturbative-scattering

approaches in their overlapping range of applicability (low-velocity limit and small

projectile charge) is both an interesting and non-trivial problem. The starting points of

‡ An extension of DFT-based potential-scattering calculations to finite (although still small) projectile

velocities has been reported in Ref. [16]. The interrelation of this approach and the quadratic response

theory at finite velocities is, however, beyond the scope of the present work.
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these two schemes are completely different and there are no grounds to a priori assume

equivalence between them. In this paper, we demonstrate that in the low-velocity limit

and to second order in the external perturbation our quadratic-response formalism and

the scattering approach are equivalent, thereby extending the RPA-based proof reported

in Ref. [3] to the general case where the xc effects are included.

This paper is organized as follows. In Sec. 2, we derive in the framework of TDDFT

a formally exact explicit expression for the quadratic density-response function of a

many-electron system, in terms of the noninteracting Kohn-Sham linear and quadratic

density-response functions and functional derivatives of the time-dependent xc potential.

In Sec. 3, we derive basic expressions for the stopping power of a uniform electron gas,

in the framework of both quadratic-response and nonperturbative-scattering schemes.

The results of numerical calculations are presented in Sec. 4. We use atomic units

throughout, i.e., e2 = h̄ = me = 1.

2. Quadratic density response

In the framework of TDDFT, Petersilka et al. [17] demonstrated that within linear-

response theory the electron density n1(r, t) induced in an arbitrary interacting many-

electron system by the time-dependent external potential φext(r, t) coincides with the

electron density induced in the corresponding system of noninteracting Kohn-Sham

electrons by the time-dependent effective potential

φeff
1 (r, t) = φext(r, t) +

∫

dr′ v(r, r′)n1(r
′, t)

+
∫

dr′
∫

dt′ fxc[n0](r, t; r
′, t′)n1(r

′, t′), (1)

where v(r, r′) = 1/|r − r′| is the bare Coulomb potential, and fxc[n0](r, t; r
′, t′) is the

functional derivative of the time-dependent xc potential Vxc[n](r, t) of TDDFT, to be

evaluated at the unperturbed static electron density n0(r):

fxc[n0](r, t; r
′, t′) =

δVxc[n](r, t)

δn(r′, t′)

∣

∣

∣

∣

∣

n=n0

. (2)

The linear-response scheme reported in Ref. [17] can be extended to all orders in

the external perturbation. This has been carried out by Gross et al. [11] in the general

case of spatially inhomogeneous electron systems, and self-consistent integral equations

for the quadratic and higher order interacting density response functions have been

obtained by these authors. In the specific case of the uniform electron gas, which

we are here interested in, these equations can be easily solved, to produce explicit

interacting density response functions in terms of their noninteracting counterparts and

the functional derivatives of the exchange-correlation potential. However, instead of

adopting the method of solution of the above mentioned integral equations, we find

it more instructive for our purposes, as well as self-contained, to derive an explicit

expression for the quadratic density response function considering the uniform case

from the very beginning.
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The electron density n1(r, t) + n2(r, t) + · · · induced in an arbitrary many-electron

system by the time-dependent external potential φext(r, t) coincides with the electron

density induced in the corresponding system of noninteracting Kohn-Sham electrons

by the time-dependent effective potential φeff
1 (r, t) + φeff

2 (r, t) + · · ·, where φeff
1 (r, t) is

given by Eq. (1) and

φeff
2 (r, t) =

∫

dr′ v(r, r′)n2(r
′, t)

+
∫

dr′
∫

dt′ fxc[n0](r, t; r
′, t′)n2(r

′, t)

+
1

2

∫

dr′
∫

dt′
∫

dr′′
∫

dt′′ gxc[n0](r, t; r
′, t′; r′′, t′′)

× n1(r
′, t′)n1(r

′′, t′′), (3)

gxc[n0](r, t; r
′, t′; r′′, t′′) being the second functional derivative of the time-dependent xc

potential Vxc[n](r, t), to be evaluated at the unperturbed static electron density n0(r):

gxc[n0](r, t; r
′, t′; r′′, t′′) =

δ2Vxc[n](r, t)

δn(r′, t′)δn(r′′, t′′)

∣

∣

∣

∣

∣

n=n0

. (4)

In the case of a homogeneous electron gas, there is translational invariance in all

directions. Hence, taking Fourier transforms with respect to space and time, the exact

momentum and frequency dependent induced electron densities, n1(q, ω) and n2(q, ω),

can be written as

n1(q) = χ1(q)φ
ext(q) = χ0

1(q)φ
eff
1 (q) (5)

and

n2(q) =
∫

d4q1χ2(q, q1)φ
ext(q1)φ

ext(q − q1) = χ0
1(q)

× φeff
2 (q) +

∫

d4q1χ
0
2(q, q1)φ

eff
1 (q1)φ

eff
1 (q − q1), (6)

where q = (q, ω), φeff
1 (q) and φeff

2 (q) are Fourier transforms of the time-dependent

effective potentials of Eqs. (1) and (3), respectively, φext(q) is the Fourier transform of

the external potential, χ1(q) and χ2(q, q1) denote the exact linear and quadratic density-

response functions of the interacting electron system, and χ0
1(q) and χ0

2(q, q1) represent

the corresponding density-response functions of noninteracting Kohn-Sham electrons.

Substituting Eqs. (1) and (3) into Eqs. (5) and (6), one finds

χ1(q) = ǫ̃−1(q)χ0
1(q) (7)

and

χ2(q, q1) = ǫ̃−1(q)χ0
2(q, q1)ǫ̃

−1(q1)ǫ̃
−1(q − q1)

+ χ1(q)gxc(q, q1)χ1(q1)χ1(q − q1)/2, (8)
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where v(q) = 4π/q2 is the Fourier transform of the Coulomb potential, fxc(q) and

gxc(q, q1) denote the Fourier transforms of the xc kernels of Eqs. (2) and (4), and ǫ̃(q) is

the test-charge–electron dielectric function [18, 19]

ǫ̃(q) = 1 − χ0
1(q) [v(q) + fxc(q)] . (9)

The Fourier transforms of the linear and quadratic xc kernels in Eqs. (9) and (8),

respectively, are defined as

fxc(q) =
∫

fxc[n0](r, t; r
′, t′)e−iq·(r−r′)+iω(t−t′)dr dt,

gxc(q, q1) =
∫

gxc[n0](r, t; r
′, t′; r′′, t′′)ei[q1·(r′−r)−ω1(t′−t)]

× ei[(q−q1)·(r′′−r)−(ω−ω1)(t′′−t)]dr′ dt′ dr′′ dt′′.

Equations (7) and (8) generalize the exact linear density response reported in

Ref. [17] to the realm of quadratic-response theory and the static quadratic density

response reported in Ref. [20] to the general case of a time-dependent perturbation.

In the so-called adiabatic LDA (ALDA), which is only rigorous in the long-wavelength

(q → 0) and static (ω → 0) limits, the xc kernels fxc(q) and gxc(q, q1) are simply the

first and second derivatives with respect to the unperturbed density of the static xc

potential of a uniform electron gas: V ′
xc(n0) and V ′′

xc(n0). In the RPA, the xc kernels

fxc(q) and gxc(q, q1) are set equal to zero. Finally, we find our theory in agreement

with that of Ref. [11], while the homogeneity of the system we consider enables us to

obtain the explicit quadratic density-response function of Eq. (8) instead of presenting

the results in the form of self-consistent integral equations.

3. Stopping power

There are two routes to describe the stopping power of the homogeneous electron

gas. One is based on a perturbative expansion of the density response of the target

(appropriate for arbitrary projectile velocities) and the other on the knowledge of the

phase shifts of potential scattering of electrons by a statically screened impurity (only

valid for low projectile velocities). We first consider these two alternative approaches,

then we focus on the overlapping range of their applicability, by considering the low-

velocity limit of the quadratic-response formulation and a second-order expansion of the

transition-matrix elements of potential scattering.

3.1. Quadratic density response

To third order in the projectile charge Z1, the average energy lost per unit length traveled

by a recoilless probe particle moving with velocity v in a homogeneous electron gas, i.e.,

the so-called stopping power of the target is obtained as follows [21, 22]

−
dE

dx
= − 2

Z2
1

πv

∫

dq
q · v

q2

[

Imχ1(q)

q2
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+
Z1

2π2

∫

dq1

q2
1|q − q1|2

Imχ2(q, q1)

]

, (10)

which by virtue of Eqs. (7) and (8) can be rigorously expressed as

−
dE

dx
= −2

Z2
1

πv
Im

∫

dq
q · v

q2

{

χ0
1(q) ǫ̃

−1(q)

q2
+

Z1

2π2

∫

dq1

q2
1|q − q1|2

×

ǫ̃−1(q) ǫ̃−1(q1) ǫ̃
−1(q − q1)

[

χ0
2(q, q1) + χ0

1(q)gxc(q, q1)χ
0
1(q1)χ

0
1(q − q1)/2

]}

, (11)

where now q = (q,q · v) and q1 = (q1,q1 · v).

3.1.1. Low-velocity limit At low frequencies we can write [8]

Imχ0
1(q) = ω Aq

and [5]

Imχ0
2(q, q1) = ω Bq,q1

+ ω1Bq1,q + (ω − ω1)Bq−q1,−q1
,

where

Aq = −
Θ(2kF − q)

2πq
,

Bq,q1
= 2Aq

(1 − k2
F/q

2
R)

−1/2

|q1||q− q1|

× sgn (cos φq)Θ(qR − kF ).

Then in the ALDA one finds

−
dE

dx
= −2

Z2
1

πv

∫

dq
(q · v)2

q2

{

Aq ǫ̃
−2
q

q2
+
Z1

π2

∫

dq1

q2
1|q1 − q|2

×
[

ǫ̃−1
q Bq,q1

ǫ̃−1
q1
ǫ̃−1
q−q1

+ Cqǫ̃
−2
q χ0

2,(q,q1)ǫ̃
−1
q1
ǫ̃−1
q−q1

+ V ′′
xcAqǫ̃

−2
q χ1,q1

χ1,q−q1
/2,

]}

. (12)

Here

Cq = (vq + V ′
xc)Aq,

vq = 4π/q2 is the Fourier transform of the Coulomb potential, kF is the Fermi

momentum, χ1,q and χ0
2,(q,q1)

denote the static (ω = 0) linear interacting and quadratic

noninteracting density-response functions, respectively, ǫ̃q is the static test-charge–

electron dielectric function, Θ(x) is the Heaviside step function, qR is the radius of

the circle circumscribing the triangle formed by the vectors q, q1, and q − q1, and

φq represents the angle facing q in this triangle. Evaluating some of the integrals in

Eq. (12), one finds

−
1

v

dE

dx
=

4Z2
1

3π

2kF
∫

0

dq

{

1

q ǫ̃2q
+

2Z1q

π

∫ ∞

0
dq1

∫ 1

−1
dµ

1

|q− q1|
2ǫ̃qǫ̃q1

ǫ̃q−q1

(13)

×





(vq + V ′
xc)χ

0
2,(q,q1) + V ′′

xcχ
0
1,q1

χ0
1,q−q1

/2

ǫ̃q
+

2 Θ(qR − kF )

q1|q − q1|
√

1 − k2
F/q

2
R

sgn(cosφq)











,
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where q and q1 now denote the magnitude of q and q1, respectively, and µ = cosφq−q1
.

If we put V ′
xc = V ′′

xc = 0 in Eq. (13), we retrieve the RPA result of Ref. [5]. If we keep

the actual value of V ′
xc but still putting V ′′

xc = 0, we reproduce the calculations reported

in Ref. [9].

3.2. Potential scattering

In the low-velocity limit of a recoilless probe particle of charge Z1, the interaction

between the Fermi gas and the probe particle can be represented as the elastic scattering

of independent electrons by a Kohn-Sham effective static central potential V (r). Hence,

the average energy loss per unit path length of a recoilless charged particle moving

with velocity v (v << vF ) through a uniform electron gas of density n0 is given by the

following expression:

−
dE

dx
= n0v kFσtr(kF ), (14)

where

σtr(k) =
16π5

k4

∫ 2k

0
dq q3|Tfi|

2 (15)

is the so-called transport cross section, Tfi denoting the transition-matrix element [23]:

Tfi =< φkf
|V |ψki

> . (16)

Here, φk and ψk represent noninteracting and interacting electron wave functions,

respectively, ki and kf denote the electron momentum before and after the collision,

k = |ki| = |kf | is the magnitude of the electron momentum, q = kf − ki is the

momentum transfer, and V (r) is taken to be the Kohn-Sham effective potential

V (r) = −
Z1

r
+

∫

n(r′)

|r − r′|
dr′ + Vxc(r), (17)

n(r) being the electron density induced by the presence of the static probe particle and

Vxc(r) being the xc potential at point r of the inhomogeneous electron system, which

in the LDA is simply the xc potential of a homogeneous electron gas with electron

density n(r). The well known expression of the transport cross-section in terms of the

phase-shifts δl(k) of the scattering problem in the spherically symmetric potential

σtr(k) =
4π

k2

∞
∑

l=0

(l + 1) sin2[δl(k) − δl+1(k)], (18)

greatly facilitates the numerical calculations, while the Friedel sum rule [24]

Z1 =
2

π

∞
∑

l=0

(2l + 1)δl(kF ) (19)

is helpful in controlling self-consistency. Echenique et al. [12, 13] and Nagy et al.

[14] evaluated the LDA Kohn-Sham effective potential by solving self-consistently the

Kohn-Sham equation of DFT, and then computed the stopping power from Eqs. (14)

and (18).
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We proceed by considering a second-order perturbative expansion of the transition

matrix Tfi(q) entering Eq. (15), which will then allow us to derive Z2
1 - and Z3

1 -

contributions to the stopping power from Eq. (14).

The Born series for the transition matrix element Tfi in powers of the effective

potential V (r) [which can be expanded in powers of the bare interaction −Z1/r:

V1(r) + V2(r) · · ·] is obtained as follows

Tfi = 〈φkf
| V + V G0

kV + · · · |φki
〉, (20)

where G0
k(r, r

′) is the noninteracting Green’s function

G0
k(r, r

′) = −
1

2π
eik|r−r′|/|r − r′|.

Up to third order in the charge Z1 of the probe particle, the square of the transition

matrix element of Eq. (20) yields

|Tfi|
2 = [V1(q)]2 + 2 V1(q)

×

[

V2(q) + P
∫

dq1
V1(q1)V1(q − q1)

k2
i /2 − (ki − q1)2/2

]

, (21)

where

V1(q) = −
Z1

2π2q2
+ (vq + V ′

xc)n1(q) (22)

and

V2(q) = (vq + V ′
xc)n2(q)

+
V ′′

xc

2

∫

dq1 n1(q1)n1(q − q1), (23)

n1(q) and n2(q) being the linear and quadratic induced electron densities, and P

in Eq. (21) denoting that the principal value of the integral must be taken at the

point where the integrand is singular. It is interesting to notice that the second-

order (Z3
1 ) contribution to |Tfi|

2 has two sources. One is the first Born contribution

to the quadratically screened effective potential V (r) and the other is the second Born

contribution to the linearly screened effective potential, as pointed out in Ref. [3]. They

have opposite signs and it is the latter which dominates [3, 4, 5].

Substituting Eqs. (5) and (6) into Eqs. (22) and (23) and then substituting the

expansion of Eq. (21) into Eq. (15), one finds from Eq. (14) the following expansion for

the stopping power:

−
1

v

dE

dx
=

4

3π

2kF
∫

0

dq

{

Z2
1

qǫ̃2q
+
Z3

1q

π2

∫

dq1

q2
1|q − q1|

2ǫ̃qǫ̃q1
ǫ̃q−q1

×

[

(vq + V ′
xc)χ

0
2,(q,q1)

+ V ′′
xc χ

0
1,q1

χ0
1,q−q1

/2

ǫ̃q
+

2

k2
F − (kF − q1)2

]}

. (24)

Performing the integration over the angular variables of q1, one readily reproduces

Eq. (13), thereby proving the equivalence between the quadratic-response and potential-

scattering schemes in the limit of low velocities of the probe particle. This generalizes
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the RPA analysis reported in Ref. [3] to the general situation where xc effects are taken

into account.

4. Results of numerical calculations

0 1 2 3 4
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0.1
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-d
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 / 
d 

x 
/ v

 (a
.u
.)

rs (a.u.)

Figure 1. Stopping power of a uniform electron gas in the low-velocity limit, divided

by the projectile velocity (friction coefficient), as a function of the electron-density

parameter rs. The chained curves represent nonperturbative potential-scattering LDA

calculations for protons (squares) and antiprotons (circles). The dashed (dotted) line

represents ALDA calculations to third order in the projectile charge Z1 with (without)

inclusion of the second derivative V
′′

xc
of the xc potential.

In Fig. 1 we plot the stopping power of a uniform electron gas of density n0 in the

low-velocity limit, divided by the projectile velocity (friction coefficient), for protons

(Z1 = 1) and antiprotons (Z1 = −1) as a function of the electron-density parameter

rs = (3/4πn0)
1/3. We evaluate both the perturbative expansion of Eq. (13) and the

non-perturbative formula§ by using the Perdew-Zunger [25] parametrization of the xc

potential of a uniform electron gas. Our non-perturbative calculations reproduce those

reported in Refs. [13] and [14] for protons and antiprotons, respectively. Perturbative

§ For the non-perturbative calculation, we have used the conventional scheme [12, 13] of iterative

solution of Kohn-Sham equations with the potential of Eq. (17) and calculation of the stopping power

from Eqs. (14) and (18) upon the achievement of convergence. The fulfillment of the Friedel sum rule

of Eq. (19) has been monitored, the error in which has not been greater than 0.02 electrons in all the

calculations.
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Figure 2. Stopping power of a uniform electron gas in the low-velocity limit, divided

by the projectile velocity (friction coefficient), as a function of the projectile charge Z1

and for the electron-density parameter rs = 2.07 corresponding to the average electron

density of valence electrons in Al. The chained curve represents nonperturbative

potential-scattering LDA calculation. The dashed (dotted) line represents our ALDA

calculations to third order in the projectile charge Z1 with (without) inclusion of the

second derivative V
′′

xc
of the xc potential. The inset shows the same plots normalized

to the square of the projectile’s charge.

and nonperturbative calculations are also plotted in Fig. 2, but now for the electron-

density parameter rs = 2.07 corresponding to valence electrons in Al and as a function

of the projectile charge Z1.

Also plotted in Figs. 1 and 2 are perturbative calculations with no inclusion of

the second derivative of the xc potential Vxc, as reported in Ref. [9], showing that the

inclusion of this term brings the perturbative calculations very close to the full nonlinear

calculation in the range of high electron densities (small rs) and small projectile charges.

Figure 1 shows that the quadratic (perturbative) stopping power for antiprotons is

extremely accurate for all electron densities with rs ≤ 2. Figure 2 shows that in the case

of Al target (rs = 2.07) and negative projectile charges the quadratic stopping power

is accurate for the antiproton charge (Z1 = −1) and above, but it is only accurate for

small positive values of the projectile charge (Z1 ≤ 0.5)‖. This is due to the presence of

the truly bound electronic states and the behavior of resonances in the case of a positive

probe particle, which are only included in a fully nonlinear scheme.

‖ Since Z1 is the bare nucleus charge of the projectile, for non-integer Z1 the results should be

considered as mathematical.



TDDFT approach to nonlinear particle-solid interactions 11

0 2 4 6
0.0

0.1

0.2

0.3

0.4

0.5

0 2 4 6
0.0

0.1

0.2

0.3

0.4

0.5

  

 

rs (a.u.)

Antiproton
b)

 rs (a.u.)

 

 
-d

 E
 / 

d 
x 

/ v
 (a

.u
.)

Proton
a)

Figure 3. Stopping power of a uniform electron gas in the low-velocity limit,

divided by the projectile velocity (friction coefficient) and as a function of the electron-

density parameter rs, for protons (a) and antiprotons (b). Solid (dashed) curves

represent calculations including (omitting) exchange and correlation. The chained

curves represent the nonperturbative potential-scattering calculations. Bold (both

solid and dashed) lines are linear (Z2

1
) contributions. Thin (both solid and dashed)

lines represent quadratic (Z3

1
) calculations.

To elucidate the role of resonances, we have performed the numerical analysis of

the phase-shifts δl(k) of the scattering in the self-consistent potential (17). At a given

rs with growing Z1 a resonance, which always exists in the continuum spectrum, moves

to lower energy and grows both sharper and more intense, which results in a stronger

variation of the phase-shifts. Since the density of states is proportional to the derivative

of the phase-shifts δ′l(k), the low-lying continuum states get filled preferentially resulting,

similarly to the occupation of the bound states, in the more efficient screening of the ion

charge and eventually in the decrease of the stopping power even before the formation of

the bound states. On the other hand, at smaller values of Z1 the existence of weak broad

resonances at high energies does not affect the applicability of the quadratic theory.

In order to investigate the interplay between high-order interactions and xc effects,

we have plotted in Fig. 3 the results of linear (Z2
1), quadratic (Z3

1), and fully nonlinear

potential-scattering calculations of the stopping power of slow protons and antiprotons,

both in the absence and in the presence of xc effects. This figure shows that: (i) The

impact of xc effects is considerably larger within linear and quadratic response theory

than in the more realistic nonperturbative potential-scattering approach, especially so

in the case of protons, which indicates that there must be a large degree of cancelation

between first, second and higher-order xc effects. (ii) At high electron densities (rs → 0),
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the inclusion of xc effects brings the quadratic-response calculations (thin solid lines of

Fig. 3) into nice agreement with their DFT based potential-scattering counterparts

(chained solid lines). However, xc effects decrease the radius of convergence of the

asymptotic perturbative expansion; while an unphysical negative stopping power is

obtained within RPA for antiprotons at rs > 5.5, this unphysical behavior is obtained

in the presence of xc effects at rs > 3.2. (iii) The performance of the perturbative

expansion is considerably better for antiprotons than for protons. This can be attributed

to the existence of electronic bound states and the behavior of resonances around a

moving proton [13], which are out of the reach of the perturbative description. (iv) The

performance of the quadratic response theory for the stopping power is considerably

better than in the case of the electron density induced at the position of the projectile

[26, 27], which is a highly nonlinear magnitude. This is due to the fact that the stopping

power involves an integration of the induced density over the whole space, as discussed

in Ref. [26].

Finally, we note that apart from the obvious usefulness of quadratic-response

calculations in situations where the interaction can be considered to be weak, it has

been recently shown that perturbative calculations can be successfully used as input in

a variational theory of charged particles interacting with a many-body system. Recent

investigations have shown that this new variational theory brings the RPA quadratic

stopping power for slow antiprotons into nice agreement with the corresponding

nonperturbative potential-scattering calculations for all electron densities [28].

5. Summary and conclusions

We have derived an explicit expression for the quadratic density-response function

of a many-electron system in the framework of TDDFT, in terms of the linear

and quadratic density-response functions of noninteracting Kohn-Sham electrons and

functional derivatives of the time-dependent xc potential. This expression generalizes

the rigorous linear density-response function reported in Ref. [17] to the realm of

quadratic-response theory, and they satisfy the self-consistent integral equations of Gross

et al. [11], valid for arbitrary inhomogeneous electron system.

The exact expression for the quadratic density-response function has been used to

obtain the stopping power of a uniform electron gas to second order in the projectile

charge Z1, which in the low-velocity limit and within the adiabatic LDA is demonstrated

to be equivalent to that obtained up to third order in Z1 in the framework of a

fully nonlinear LDA potential-scattering approach. This generalizes the RPA analysis

reported in Ref. [3] to the general situation where xc effects are taken into account.

We have carried out LDA numerical calculations of the stopping power of a uniform

electron gas for slow positively and negatively charged ions, as a function of both the

electron-density parameter and the projectile charge. We find that quadratic-response

theory yields a stopping power that is in excellent agreement with the nonperturbative

stopping power in the range of high electron densities and small projectile charges.
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The quadratic-response (perturbative) stopping power for antiprotons is found to be

extremely accurate for all electron densities higher than the electron density of valence

electrons in Al. In the case of Al, quadratic-response theory is found to yield accurate

results for small negative projectile charges up to the antiproton charge, but a fully

nonlinear scheme is required to account for the energy loss of slow protons.

Although our equation (11) for the stopping power is exact to the Z3
1 order, in the

numerical calculations we have utilized the local and adiabatic approximation for the

linear and quadratic exchange-correlation kernels, which is consistent with the available

fully nonlinear calculations within the potential scattering method. To study the role

of the non-locality (wave-vector dependence of the exchange-correlation potential) and

non-adiabaticity (its frequency dependence) in the nonlinear theory of stopping-power

is, however, a challenging task, and this work is now in progress [29].
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